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PERIODIC VISCOUS FLOW: A BENCH-MARK PROBLEM 
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SUMMARY 
A double-transform technique provides a semi-analytic solution in the form of a series expansion for 
unsteady axisymmetric Stokes flow in the entrance region of a semi-infinite rigid cylindrical tube. This in 
turn offers an appropriate bench-mark problem for evaluating the quality of numerical approximations. To 
illustrate this, periodic axial flow in a circular cylinder is considered. Some aspects of the bench-mark 
problem that are of interest include the reverse flow in the wall layers, the accuracy of the approximate 
method in different flow regimes and the mesh grading. This bench-mark problem and the numerical study 
provide some insight into practical issues pertinent to the approximate solution of unsteady and periodic 
flows. 
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INTRODUCTION 

Numerical approximation of viscous flow problems presents a viable approach for analysis of 
complex flows in engineering and an important adjunct to experimental and analytical studies. 
Finite difference and finite element methods have been extensively developed for these and other 
flow problems and are now in wide use. New variants of the methods are developed periodically 
and must be tested to ascertain if they offer an improvement on the existing technology. 
Moreover, as new classes of problems are considered with existing techniques, certain basic 
questions such as adequacy of the grid and time integration procedure must be addressed if 
reliable simulations are to be made. 

Bench-mark test problems comprise an important component in the evaluation of approx- 
imate methods. There are a few well known solutions to viscous flow problems such as those 
classical solutions for fully developed flows in channels and pipes' and the recently obtained 
solutions for steady entrance flow in pipes.273 For unsteady and periodic flows there appear to be 
very few analytic results that offer a good bench-mark for testing the methods or evaluating a new 
class of problems. The present study is directed to the development of a bench-mark analytic 
solution for unsteady periodic flows and the associated numerical experiments using a finite 
element Galerkin formulation for Stokes flow. 

Transform techniques were utilized in a previous study3 to obtain a product-series analytic 
solution for unsteady axisymmetric Stokes flow of an incompressible Newtonian fluid in the 
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entrance region (and beyond) in a semi-infinite rigid cylindrical tube. In the following discussion 
this bench-mark problem is briefly described and the analytical results are summarized. We give 
sufficient details for the general construction to be understood and tabulated results for use in 
future comparisons. A Galerkin finite element model is then introduced to construct an ap- 
proximate formulation. Numerical comparison studies of the finite element and analytic solutions 
are given to assess the quality of the approximate method near the entrance region, in the reverse 
flow for the wall layer and in other flow regimes. 

PROBLEM STATEMENT 

Under the stated assumption, the dimensionless time-dependent Stokes equations governing 
axisymmetric viscous flow in cylindrical co-ordinates reduce to 

au av v 
az aR R 
- +- +- = 0, (3) 

where dimensionless quantities are capitalized: 

u = u/u, R = r/a,  

v =  v/U, Z = z/a, (4) 
p = ap/(pvU), T =  vt /a2.  

Here u and u are the axial and radial components of the velocity vector, p is the pressure, p and v 
are the density and kinematic viscosity of the fluid, a is the radius of the tube, t is time, r and z are 
the radial and axial co-ordinates and U is an appropriate velocity scale factor for the non- 
dimensionalization. On the surface of the tube no slip applies, 

U(2, R, T) I ,= ,  = V(Z,  R, T ) I , = ,  =0, ( 5 )  
and the time-dependent inlet flow velocity is specified. In the present study the entrance condition 
for periodic flow in a semi-infinite tube is given in terms of a sinusoidally varying axial velocity 
component of specified frequency together with zero radial component. That is, at 2 = O  we have 

for 0 < R < 1, 0 < 2 < 00 and - 00 < T <  co. Since many problems of practical interest deal with 
entrance flow difficulties, in the present study we have set 

(8) 
when 0 < R < 0.95, i‘ 1 -(R-0.95)2/(1 -0-95)2 when 0 * 9 5 < R < 1 ,  UOW = 

so that the axial velocity at the entrance of the tube is uniform except near the walls where it 
parabolically approaches zero in a small layer region. The analytical results described later have 
been obtained for general inlet flows and periodic flows with a wide range of frequencies. For 
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purposes of the present comparison and bench-mark study we select typical frequencies of 
W ,  = 30 and 60 for the numerical calculations, where the flow is above frequencies which are 
quasi-steady and below frequencies where the assumption of unsteady Stokes flow becomes 
invalid. 

ANALYTICAL RESULTS 

The above problem in which two velocity components are specified at  Z = 0 is referred to as a pure 
entrance condition problem. In contrast, a problem in which only one component of velocity is 
specified at the entrance with a second entrance condition specified either in terms of pressure or 
in terms of a normal component of a velocity gradient is known as a mixed entrance condition 
problem. The semi-analytic entrance flow solutions of the pure entrance condition problems, 
presented later in this treatment, are obtained in an indirect manner in which two mixed entrance 
condition problems are first solved. In each of these mixed problems, one component of entrance 
velocity is specified to be identical to a component of entrance velocity for the pure entrance 
condition problem while the second entrance condition is left as an unspecified function to be 
determined from a correspondence relation. 

Both types of mixed entrance condition problems are solved analytically to yield closed-form 
solutions in series form in which the normal mode expansion coefficients are given in terms of 
integrals containing appropriate boundary conditions. A correspondence relation is then devel- 
oped from which two unspecified boundary functions can be determined so that the two mixed 
entrance conditions have identical solutions for all Z ,  R and T. Thus the solution to either mixed 
entrance condition problem is equal to the solution of the pure entrance condition problem with 
U and V specified at Z=O. The indicated correspondence relation is solved by truncated 
orthogonal expansions for Fourier transforms or complex amplitudes of the unspecified bound- 
ary condition. The truncated expansions ensure that the two mixed entrance condition problems 
have identical solutions from some finite Z to infinity. The truncated correspondence relation is 
solved numerically and to this extent only is the result ‘semi’-analytical. Note that the correspon- 
dence relations are, however, obtained as the analytical solution to mixed entrance condition 
problems. 

The solution consists of a superposition of the developed flow solutions, denoted by U,,  V,  
and P, ,  together with the entrance flow solutions, denoted by U , ,  V, and P ,  .4-6 This superposi- 
tion may be formally expressed as 

u=u,+u,, V= V,+ v1, P = P , + P , ,  (9) 
where P I  is referred to as an excess entrance pressure. 

are 1 . 3 . 4  
For the specific choice of entrance conditions given by (6H8), the developed flow solutions 

(10) 

(1 1) 

0.9671 [ Jo(i3’’ , /  W ,  R ) -  Jo(i3i2, /Wo)]  exp(i W, T )  
J ,  ( i 3 /  ,/ W,) 

U, = Re 

v, =o, 
0.967 1 Wo i Jo( i 3 I 2  JW0)  exp(i W, T )  

- = R e  az J2( i3I2 , /  W,)  

where Re( ) denotes the real part of a complex function, i=  ,/( - 1) and J ,  and J ,  are Bessel 
functions. The factor 0.9671 is a result of rounding of the entrance profile at the corners. Note 
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that, from equation (12), P ,  is independent of R and decreases linearly with Z. The amplitude of 
the pressure is determined only within an arbitrary additive constant which here is taken for 
convenience to give a reference value P ,  = 0 at Z = 1.2. Numerical results given subsequently are 
for the dimensionless frequency Wo= 30, in which case equation (12) reduces to 

(13) 

The solutions for the entrance flow contributions may be expressed in the form of a normal mode 
expansion as 

[ 2::; i: :I]-"' ['h [ &(K, $p(K, R, R, W o ) ]  Wo)  exp[i(W,T+KZ)] )lu',-,=3Cl K = K n ( W o ) ,  (14) 

which are also evaluated in the present case for Wo = 30 with summation over the normal modes 
corresponding to the roots of the frequency equation with positive imaginary parts. The 
associated frequency equation is defined as F ( K ,  Wo)=O, where 

aprn - -- -37.50 cOS(~OT+ 73.2"). az 

U,(Z, R, T )  4 U ( K  R, Wo) 

F(K, Wo)=HJo(iH)Jl(iK)- KJ,(iH)J,(iK), (15) 

(16) 

(17) 

(18) 

with H = J(i W, + K'). The corresponding normal mode eigenfunctions are 

q5u( K ,  R, Wo) = K Jo (iKR ) J ,  (iH ) - H Jo (iHR ) J ,  (iK ), 

&(K,  R, W,) = K [J1 (iHR)J, ( i K ) - J l  ( i H ) J , ( i K R ) ] ,  

4 p ( K ,  R, Wo)= - W,J,(iH)J,(iKR). 

Now the normal mode coefficients p, in the expansion defined by equation (14) can be determined 
in an indirect manner with the use of a correspondence relationship consisting of a truncated set 
of integral equations (as explained in Reference 3). This correspondence relation is obtained by 
equating the expressions for 

and 

where 5 is a dummy integration variable replacing R. In the above integral expressions the 
entrance condition Uo(R) is specified by (8) and the entrance condition Vo(R) is specified to equal 
zero according to (7). Go and Po are complex phase amplitudes related to the unknown entrance 
conditions at Z=O for aV/dZ and P respectively. 

Remark. For the sinusoidal periodic flow considered in this paper, complex exponential 
functions in time are used. This method is more straightforward than the method used in 
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Goldberg and where a transform in time is taken for solutions to problems in which the 
time dependence is of a more general nature. 

The unknown entrance conditions Po and Go can be determined from the solution to the 
correspondence relation for consistency with the specified entrance conditions U ,  and V,. The 
normal mode coefficients 8, are finally obtained by substituting these results into expressions (19) 
and (20). Under this condition, B, = 8,' = b.'. 

To facilitate a solution to the correspondence relation, the unknown complex functions Po and 
Go are replaced by a series of orthogonal functions with unknown complex coefficients, thereby 
reducing the correspondence relation to a truncated set of algebraic equations. The integrals in 
the correspondence relation containing the expression Uo(R) given by equation (19) could not be 
evaluated in closed form, unlike the situation for the problem given by Goldberg and Folk.3 
Consequently, Gaussian quadrature was introduced for the numerical evaluation of these integral 
expressions. The solutions presented in this paper were obtained with 200 modes contained in the 
correspondence relations. (However, it should be noted that the series converges rapidly and fewer 
modes are needed for solutions where Z > 0.02.) 

For convenience in the presentation of results, the solutions for the velocity components and 
the excess entrance pressure are expressed in the form 

u(z, R ,  T ) = A ,  ~ o s ( w , ~ + e , ) ,  (21) 

v(z, R ,  T )  = A, cOS( w, T+ e"), (22) 
P, (z, R,  T )  = A ,  cOs( W, T+ e,), (23) 

where A,,  A, and A, represent amplitudes with 8,, 8, and 8, phases of the solutions, and W, is 
either 30 or 60. Note that each of the above amplitudes and phases of the solution is dependent 
upon both the coordinates R and Z .  Solutions for the amplitude as well as the phases of the 
velocity components U and V and the excess entrance pressure P ,  are given in Tables I and 11. As 
indicated in the tabulated results, the solution approaches the developed flow result with Y and 
P, approaching zero for large values of Z ,  and the velocity profile approaches the entrance 
boundary condition given by equations (6)  and (7) (where A,+U,(R) ,  8,-0 and A,+O) as Z 

Table I. Analytical solutions for amplitudes ( A )  and phases (0) of the axial and radial velocity components 
and excess entrance pressure at W, = 30 and selected (R ,  Z )  points. (All phase angles are given in degrees 

relative to that of the entrance flow velocity.) 

O.OO0 
O.OO0 
0.020 
0.020 
0.100 
0100  
0.400 
0.400 
0.600 
0600  
1.200 
1.200 

O.OO0 
0.975 
0.OOO 
0.975 
O.Oo0 
0.975 
OOOO 
0.975 
O W 0  
0.975 
0.OOO 
0.975 

1.05683 
0.75536 
1.00103 
0.69869 
1.02046 
0.39803 
1.19773 
0.1 6994 
1.29812 
0.15754 
1.38573 
0.1 5421 

0.00 
0.00 

- 0.04 
0.08 

- 1.01 
2.15 

-9.85 
20.76 

26.89 
- 18.59 

29.67 

- 14.51 

O.OOO00 
0.00544 
O~OOO00 
0.06 184 
O W 0 0 0  
0.03606 
O~OOO00 
0.00247 
0.00000 
0.00067 
O.Oo000 
O~ooo02 

5.65761 
0.1 1 60-24467 

5.761 13 
178.52 41.58482 

4-61052 
175.63 11.20470 

1.68158 
154.18 0.78742 

0.77756 
0.365 1 1 143.22 
0.06755 

174.82 0.03591 

- 164.92 
- 1.73 

- 165.62 
- 2.00 

- 164.17 
- 2.07 

- 155.95 
3400 

- 148.44 
56.63 

65.97 
- 124.13 
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Table 11. Analytical solutions for amplitudes ( A )  and phases (0) of the axial and radial velocity components 
and excess entrance pressure at W, = 60 and selected (R,  Z) points. (All phase angles are given in degrees 

relative to that of the entrance flow velocity.) 

Z R A, 6, A,  0, A, 0, 

0.OOO 
0.OOO 
0020 
0.020 
0.100 
0.100 
0400 
0400 
0.600 
0600 
1 ~OOO 
1.000 
1.200 
1.200 

0OOO 
0.975 
0.000 
0975 
O W 0  
0.975 
0OOO 
0975 
0OOO 
0.975 
0.OOO 
0-975 
0OOO 
0.975 

1.0568 
0.7554 
1.0007 
0.6987 
1.0121 
0.401 8 
1.0849 
0.2097 
1.1 145 
0.2046 
1.1387 
0.2025 
1.1437 
0.202 1 

0.0 
0.0 
0 0  
0.2 

- 0.6 
4.1 

- 6.8 
27.2 

- 10.2 
31.2 

- 12.6 
32.4 

- 12.8 
32.5 

O~OOOO 
0.0054 
O.oo00 
0.0619 
O~OOOO 
00354 
0.OOOo 
0.0019 
O~OOOO 
0.0004 
0~0000 
0.000 1 
O~oooO 
O.oo00 

66891 
0.2 59.46 17 

61268 
177.0 40.8582 

5.4079 
171.9 108589 

2.0649 
142.8 1.1751 

0.9893 
138.9 05232 

0.2038 
169.4 0094 1 

0.0902 
173.7 00396 

- 157'2 
-2.1 

- 158.4 
- 2.2 

- 158.0 
0 7  

- 153.7 
367 

- 149.2 
42.2 

45.8 

50.4 

- 139.2 

- 134.2 

approaches zero. Comparisons between the analytic solutions and the numerical solutions 
obtained with the finite element method are given later in Figures 1-3 for W, = 30. 

FINITE ELEMENT APPROXIMATIONS AND RESULTS 

Forming a weighted residual statement for the axisymmetric Stokes flow system in equations 
(1H3) and integrating by parts in the cylindrical geometry leads to a weak variational statement 
for the solution field (U, V, P): find (U, V, P) satisfying the essential boundary conditions (no slip 
on the wall and the inlet flow condition) together with the initial condition (no flow) and such that 

- w1 +- ~ 1 + -  -+- ~ 

au ap a u a w ,  a u a w ,  
ar az aR aR az az 

qV-udR=O 

for all admissible test functions ( w l ,  w,, 4). Since the problem is axisymmetric, no angular 
dependence enters in the formulation of the problem and the domain can be discretized using a 
two-dimensional section in the R-Z plane. Introducing a finite element discretization and 
associated piecewise polynomial bases, the velocity component and pressure expansions are given 
by N 

Uh(R,  Z ) =  UjQj (R ,  Z ) ,  (27) 

Vh(R, Z ) =  C 6 m j ( R ,  Z ) ,  

j =  1 

N 

j =  1 
(28) 

N 

Ph(R, Z ) =  2 Pj'Yj(R, z). 
j =  1 
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Figure 2. Comparisons of semi-analytical and finite element results for WoT=x/2: (a) U at R=O; (b) U at R =0.975; 
(c) V at R=0.975 
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Figure 3. Comparisons of semi-analytical and finite element results for W, T=3n/4: (a) U at R=O;  (b) U at R =0.975; 
(c) Vat R=0.975 
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Substituting into the previous weak integral statement, we obtain a semidiscrete system of 
ordinary differential equations of the form (see e.g., Carey and Oden7) 

M V + K  V =O. (30) [:I [:I 
This system is to be integrated with respect to time from the specified initial data. In the present 

calculations this system is integrated using an explicit-predictor/implicit-corrector scheme with 
time step chosen conservatively small to better assess the effect of spatial discretization.* Of 
particular interest here are periodic flows, so the system (30) was accurately integrated through 
two inlet velocity cycles, by which point transient effects become negligible and the periodic state 
is attained. Numerical results at different times during an inlet cycle were examined. The 
computed finite element solution was started at T= -n/2Wo. This means that W,T= -n/2 or 
that the inlet flow is zero and u = 0 everywhere, thereby avoiding an ill-posed problem. Also from 
the semi-analytical solution we know that the cross-stream velocity I/ is essentially zero and the 
pressure is constant by Z =  1.2; therefore we set V=O and the normal stress to zero at Z =  1.2 as 
downstream boundary conditions with the discretized domain 0 < Z < 1.2. 

The finite element calculations were made on a graded 12 x 25 mesh in the (R, Z )  frame using 
eight node velocity/four-node pressure Co quadrilateral elements. The mesh was fine near the 
wall and inlet regions. Velocity vector plots provide good flow field visualization and represen- 
tative results are shown in Figure 1. The length of the arrows and size of the arrowheads are 
scaled linearly with the velocity magnitude. Since the velocity vectors are plGtted from the 
element nodes, the distribution of velocity vectors corresponds also to the grading of the mesh. 
The two flow fields displayed correspond to inlet flow zero ( W, T =  n/2) and later ( Wo T= 311/4) 
when the flow is directed outwards (in the reverse half-cycle). Note that when the inlet velocity is 
zero the periodic flow has a well-defined separation and reverse flow near the wall. 

Using the analytical results for amplitude and phase in Table I, the velocity components are 
computed and compared in Figures 2 and 3 with the finite element results. The axial component 
U for Wo T= n/2 (Figure l(a)) is graphed along the centreline ( R  = 0) and near the wall ( R  = 0.975) 
in Figures 2(a) and 2(b), demonstrating good agreement. The comparisons at R = 0 * 4  and 0.8 (not 
shown) were of similar quality. The radial velocity component V is also shown in Figure 2(c) at 
R=0.975 and agreement is again good. Next the same sections are compared when the inlet 
velocity has decreased through the eighth period from zero (Figure l(b)). The axial components 
are given in Figures 3(a) and 3(b) and the radial component in Figure 3(c). Note that in Figure 3(a) 
there is a slight discrepancy at Z = 0 due to the inability of the semi-analytic solution to match the 
inlet boundary condition with the number of modes utilized. At all other points agreement is good. 
For W, = 60 the morphology of the flow is the same and agreement between the two methods is 
the same as that shown in Figures 2 and 3 at W,=30. 

CONCLUSIONS 

Semi-analytic solutions to the problem involving axisymmetric time-dependent periodic Stokes 
flow of a Newtonian fluid in the entrance region of a semi-infinite cylindrical tube are given. The 
resulting solutions are presented as a bench-mark for comparison with and evaluation of finite 
element Galerkin methods for the numerical solution to non-steady periodic Stokes flow 
problems. Comparisons between the semi-analytic solutions and the finite element solutions are 
presented along the centre of the tube (R=0) and near the wall of the tube (R=0.975). 
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